y

HIToolbox:
[ntroducing HIView

Session 205

y

HIToolbox:
[ntroducing HIView

Ed Voas
HiToolbox Manager

What We Will Learn

* History of controls on Mac OS
* Introducing HIView

« What it is

o Advantages

« How to use it

Control Manager

* Introduced in 1984
* Some improvements in System 7/

* Lots of new features in Mac OS 8 and beyond
» Embedding
 Many new controls
« Real APIs for structure stuffers

[t Ain’t Pertect . .

* 16-bit coordinate space

* Erase-behind behavior

* At times, failure to clip to parent

* [nability to detach/attach subviews easily

* Qverlapping views not supported

s

Introducing HIView

What Is HIView?

* New API to replace Control Manager
* Control Manager is compatibility API
*[tis a real view system (no, really)
* This change will not affect you
» Unless you want to take advantage of it

Advantages

* Consistency and simplicity
» Reduce and simplify!

* Efficient drawing
* Unification of implementation

» Everything is a view! (almost)
* Easier to write custom widgets

Still Migrating . -

* [n Jaguar, HIView replacements incomplete
* [f not in HIView .h, use Control Manager API
* Over time, HIView.h will subsume Controls .h

Controls vs. Views

* Controls are Views
*Views are Controls
* The difference is how they act

Features of HIView

* One-pass, composited draw model
* Modern coordinate system

* Quartz drawing

* Proper Z-ordering

* Ability to attach/detach views at will

Composited Drawing

“Draw or draw not. There is no erase.”
— Anonymous Jedi Master

Composited Drawing

* Predictable drawing order
e Back to front
» Respects hierarchy
e Respects Z-Order
* Eliminates pattern alignment issues

Efficient Drawing

* Goal: draw each opaque pixel once

*Only ¢

raw visible area

* How ¢

0 we know what is visible?

» Parent bounds
» Siblings above view in Z-order

e Opacity of views above you

Invalidation

* Direct drawing is discouraged

* [f you want to redraw, you must invalidate

o HIViewSetNeed

o HIViewSetNeed

* Drawing happens later, at pred

1sDis;]

D

play

IsDispl

ayln!

Region

» Right before window flush

» Window painting

lictable times

Less Is More

* General Rule: Toolbox never invalidates
e Itis up to the views

* Well OK, sometimes it does
» Hide, show, move, resize

*View is responsible for invalidation otherwise
» Activate, enable, value changes, etc.

Coordinate Systems

* Two rectangles for every view
» Frame: Position within parent view
» Bounds: View’s local coordinates
* You move your view based on frame
*You draw and hit test based on bounds

HIView Bounds

HIView Bounds

HIView Frame

Bounds/Frame Advantages

* Consistency
» These rectangles never change on you
* Frame concept is more efficient

» Subviews never need to change when
parent moves

Positioning Views

* Was two-stage process
« Move, resize
* SetControlBounds was a step forward
* Now it is much better
 HIViewdSetFrame
« HIViewMoveBy

» HIViewPlaceInSuperviewAt

Converting Coordinates

* Three routines to help you

HIViewConvertPoint
HIViewConvertRect

HIViewConvertRegion

* Converting to/from the NULL view
means window relative

New Geometry Types

* Floating-point types to replace QD types

e HIPoint
e HIRect
o HISize

* All HIView APIs are in terms of these new types
* Same as CG types (typedefs)

Two Graphics Models

* (Juartz
« Recommended: native model

* QuickDraw
» Compatibility and quick migration

Quartz

* Native drawing system for Mac OS X
* Allows transparency, anti-aliasing
* Super-cool rad tricks

o Beziers

» Scaling

e Rotating

Quartz Coordinates

HIView Coordinates

00—

Using Quartz

* Context is transformed— 0, 0 at top left
» Windowing system is top left
» Your existing code is top left

« Do not need to deal with window
resize 1Ssues

* Requires some new APIs to draw images
« HIViewDrawCGImage

QuickDraw Drawing

* For easy transition, QD possible
» Your view must advertise its need for QD
e Performance tax—need to sync

Off-screen Imaging

* Drawing controls into off screens was difficult
* Now it is easy!

» HIViewCreateOffscreenlmage
*Yields CGImageRef

* Will be able to use for drag images, etc.

Demo

s

Enabling HIView

Enabling Compositing

* Per-window
* Must use CreateNewWindow
* kWindowCompositingAttribute
» Specifiable only at window creation time
* Standard handler is highly recommended

Windows With Compositing

* Operates completely in terms of views
* Painting merely paints the root view
» Paint procs are not called
» Content is not erased as usual
* When window resized, root view is resized
» Layout of children propagates from there
* Listen to kEventControlParentBoundsChanged

Windows With Compositing

* When window is hidden, so is root view
» Prevents unnecessary drawing

* When window is shown, view is shown,/drawn
» Allows content to be prerendered

* Do not need to listen to
kEventWindowDrawContent

s

The View Hierarchy

Start at the Top

* With compositing on, hierarchy is deeper
* Root view is the window frame
 Window widgets are views themselves
o Contains a content view

* From root you can find any standard subview
» HIViewFindByID

Eftect on CreateRootControl

* [n compositing mode, CreateRootControl will err
» errRootAlreadyExists

* GetRootControl will yield the content root
» Maintains compatible behavior

* HIViewGetRoot will yield the true root
e Use HIViewFindByID
» kHIViewWindowContentID

Embedding

* Add new subviews . . -
o HIViewAddSubview

* Remove subviews . . -
 HIViewRemoveFromSuperview

* New controls we introduce will not have
an owning window parameter

/-Order Fun

e We allow Z-order iteration

o
)

HIViewGetFirstSubView
HIViewGetLastSubView
HIViewGetNextView

HIViewGetPreviousView

* And moving in the Z-order
» HIViewSetZOrder

s

Mouse Event Handling

Mouse Handling: The Past

* Get event
* Call FindWindow
e If the result is in Content, call FindControl

o Call TrackControl/HandleControlClick
¢ [f result in window widget, call TrackBox

» If successful, do whatever is expected

Mouse Handling: Now

* et event

* Determine window from event parameters

* Find out which view of window to give it to
* Give the event to that view

*You do not treat window widgets differently!

New Event Parameters

* kEventParamWindowRef
« What window the mouse event is for

* kEventParamWindowMouseLocation
 Window structure-relative mouse location

Mouse Event APIs

* HIViewGetViewForMouseEvent
» Tells you what view should receive it

o Allows

parent views to intercept clicks in

their children

e HIViewClicl
 Sends

K
1 mouse down event to a view

« Can turn into a context click or normal one

Mouse Event APIs

* HIViewGetSubViewHit
» Raw subview hit detection
» Generally not used
* HIViewSimulateClick
» Great for making custom views accessible

Handling Mouse Events

* Could not get easier

rootView = HIViewGetRoot(window);
HIViewGetViewForMouseEvent(root, event, &target);
result = HIViewClick(target, event);

eWell Ilied . .use standard window handler!

It Is Enabled—Now What?

* Eliminate calls to DrawControls, etc.

* Evaluate usage of Get/SetControlBounds
« HIViewGet/SetFrame
 HIViewGetBounds

* Eliminate any erase-behind you might be doing

Custom Content

* Must be wrapped into an HIView
* Not as hard as it sounds in most cases
* Required to ensure consistent behavior

Creating Custom Views

* Custom views need to subclass HIView

#define kMyPhatClassID
CFSTR(“com.phatclass.superwidget”)

HIObjectRegisterSubclass(
kMyPhatClassiID,
kHIViewClassID,

0, // no options
MyPhatEventHandler,
GetEventTypeCount(kEvents),
kEvents,

NULL, // no handler data
&classRef);

Creating Custom Views

* Next, you need to instantiate your view

HIObjectCreate(
kMyPhatClassiID,

NULL, // or initialization event as needed
&objectRef);

Typical Events to Implement

* Hit Testing

®* Drawing

* Region Calculation
* Drag and Drop

Simple Hit Testing Example

HIViewPartCode
MyObiject::GetPartHit(const HIPoint& inPoint)

HIRect bounds;
HIViewPartCode part = kControlNoPart;

HIViewGetBounds(GetViewRef(), &bounds);

if (CGRectContainsPoint(bounds, inPoint)
part = kMyControlPart;

return part;

The Draw Method

* Carbon Event: kEventControlDraw

* Two parameters
e Draw region: how much to draw
o Context: where to draw

Simple Drawing Example

void
MyObject::Draw(RgnHandle inLimitRgn,
CGContextRef inContext)
{
HIRect bounds;

HIViewGetBounds(GetViewRef(), &bounds);

CGContextSetRGBFillColor(inContext, 1,0, 0, 1);
CGContextStrokeRect(inContext, bounds);

Calculating Regions

* Carbon Event: kEventControlGetRegion

* When the Toolbox needs certain regions,
it asks your view

* Two most important regions
e Structure region
« Opaque region

Structure Region

* This can extend outside your bounds
e Focus rings

* [f you do not respond, your bounds is
your structure

* [you ever need to reshape yourself
» HIViewReshapeStructure
 Recomputes your structure and invalidates

Opaque Region

* Helps determine what is visible below you
* Optimizes drawing
* Used to determine window’s opaque region

* [f you do not respond when asked for this
region, you are completely transparent

Drag and Drop

* Supported through several new Carbon Events
« kEventControlDragEnter

» kEventControlDragWithin

« kEventControlDragleave

« kEventControlDragReceive

*You must turn on drag support for the window

» SetAutomaticControlDragTracking-
EnabledForWindow (whew!)

Drag and Drop

*[f you do not respond to drag enter . . -
» No within, leave, or receive events for you!
» For efficiency

* [f you may want the drag, return noErr from
your handler

» But do not do so if you know you do not

Drag and Drop

* Innermost ‘focused’ view gets ‘within’ events
» Containing views do not
* Also is target of the drop

Demo

Summary

* HIView is a huge step forward for Carbon!
e It frees us from the past

* Qur future is clear
» Carbon Events, HIObject, HIView

*You are urged to at least start working with
the WWDC seed

« Feedback is critical to its success!

Roadmap

206 HIToolbox: New Controls

Hall 2
and Services: Wed., 2:00pm
Learn about the new tools at your disposal
207 Improving Performance Hall 2
With Carbon Events: Wed., 3:30pm
How to make the most of Carbon Events
FF005 HiToolbox: Room J1

Come tell us what you think

Thurs., 10:30am

Who to Contact

Xavier Legros
Mac OS X Evangelist

xavier@apple.com

’

http://developer.apple.com/wwdc2002/urls.html '

Documentation

HIView

* HIView Reference (Prelim)
* HIObject Reference (Prelim)

* HIToolbar Reference (Prelim)

ADC Member Site > Download Software > “Jaguar” Mac OS X

For More Information

* O'Reilly “Learning Carbon”

* Carbon Developer Documentation
http://developer.apple.com/techpubs/macosx/macosx.html

OX JUMPED OVER

HE LAZY DOG.

Xavier Legros
Mac OS X Evangelist
xavier@apple.com

http://developer.apple.com/wwdc2002/urls.html

& WWDC2002

& WWDC2002

& WWDC2002

